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Abstract

Several zontrol function interpolatior. nuerical gric 6eneration, and its application in
tecn'.'qes in a general tn-ree-dimenslonal e. 1reIc the numerical solution of partial differential
grl Feneration cooe and tneir effects on eq.atons, are covered in detail in a recent text
so'- u ns ;s'-ng an '.=p'-cit Euler algorttra arev on tne subject.3 SeveraZ surveys of the field
exa= ne . .nese results will serve t -r nave also been given, and three conference
esi% . :f controi function proce.dures ana pro:!eedin3 _dt1cated ts tis area have been

Interpnlat-ion tecrr.nques in general grid
generation codes. Three configurations an. tr.ree
gr* types ("C", "C", and "H" grilds' are exao-ned. The computational grid, or mesh, working in
The results indicate that tne selection of tne conjunction with the flow solver car, have a
control function interpolation techniques, which substantial impact on the aerodynamic solution;
affects grid spacing, should be based on boundary therefore, it is the objective of this analysis to
curvature ano spacing. The selection of tne examine several gridding procedures and their
interpolation tecnnique can then be made effects on Euler approximations. This study was -
transparent to the user of general grid generation conducted as part of the development effort of a
crtes, general three-dimensional grid code for realistic

aircraft/mlssile configurations. The purpose of
Nomenclature tnis analysis is to demonstrate the viatility of

automatic determination of the control fu.nction,
. elements of covariant metric tensor in the elliptic grid generation system, from the

Cm = 1,2,3; n = 1,2,3) boundary point distributions using separate
of contravariant metric tensor interpolation techniques for the terms arising-elements techniquesnt etorcatnsor .

(m = 1,2,3; n = 1,2,3) from spacing and local curvature. These results
- Cartesian position vector will serve to guide the design of control function

(r = xi + yJ + zk) procedures and interpolation techniques to be made
xyZ - three Cartesian coordinates automatic and transparent to the user in this code

- three curvilinear coordinates (i : and are similarly of relevance to the design of
1,2,3) of transformed region general grid generation codes by others.

F. - "Control functions" which serve to
control spacing and orientation of grid Grid-Generation

lines (n = 1,2,3)
r - local radius of curvature A general three-dimensional grid generation

-diameter code has been written which allows any number of
- freestream Mach number blocks to be used t cover an arbitrary three-
- angle of attack (degrees) dimensional region. Any block can be linked to
- pressure coefficient any other block, with complete continuity across
- sonic pressure coefficient the block interfaces. The composite structure s

such that completely general configurations may be
Introduction treated, the arrangement of the subregions being

specified by input, without modification cf the
:r. tne fie.- of computational fluid d'nan1-cs code. Tne code Inclues a tnree-dimensional

current research is aimed primaril: at algebraic generation system based on transfinite
Improving both the accuracy and efficiency of the interpolation for the generation of an initial
r,..-Ialteunnl.;es employed In solving f solution to start the iterative solution of the
f. ow, nea, transfer, and combustion proble:s. elliptic generation system. Tn13 feature also
.:ven-.ts :.t be made in both of t.hese areas allows the code to be run as an algebraic

-f. I F t to become a viable partner to tne wlnd generation system if desired.
n 2:., er D i,' c des IaS.. Numerical grTen

........ r. reqj.res teonnology development and '. Tnis code uses an elliptic generation system
tLeen cite: as a major pacing item for realistic wIth a.tomatic evaluation of control functIons

msrs:. lt I~s£le applications. Tne tecnr:;ues of from boundary point distrlbutions. Several
procedures for determining the ointrol f. l-tIcns

_.: , _.AF, kcputational Aerodynamicist, 1,eoer from the boundary point distributions are
incorporated In the code, and It was the p.rpcs-

* :,..:r, A,' -en [n'tr. n , Meo 
' 
:AA cf tne present study to evsl uate the effeotveness

--. ," " -" "- "
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of these procedures with regard to Euler and =
sol utlong. Y r T(

The elliptic grid generation system is defined so that Y 212

2 .' 2(6)

2 3
' - r -  P r - With the J points on the vertical sides, and I
-rr, (1) pclnts on the horizontal sides, the control

fu;nctlor. Pz on the vertical sides then can be

wnere the gmn are the elements of the evaluated tusIng a central difference technique
contravariant metric tensor: for Eq. (6)) from the point distribution thereon

as
* V .? V" * (2 ) P (i1 ]) = - - 2v ( 1 j )}+ y ( 1 - )

These elemenL2 are more conveniently expressed in ry(1.J41 ; - y .j-)}
terms of the elements of the covariant metric
tersor, : for jz2,3,--,J-1, with an analogous equation witt

I for the first argument. The values of P2 in the
r em r n - (3) Interior of the region then can be interpolated

from values of P2 on the two vertical sides. A
wnlc-n can be calculated directly. Thus 3IIlar evaluation of the other control function,

P,, on the two horizontal sides from

P, X
, cyclic, (n,k,l) cyctic, 1(7)

XI

where g, the square of the Jacobian, is giver. by
produces a zero in the present case due to equal

d e t =1 r x r ~ spacing on these sides. In the case of unequal
(5) spacing, the values of P1 in the interior of the

region would be evaluated by interpolation between
:n these relations, r is the Cartesian the values on the two horizontal sides. With the

position vector of a grld point (r z ix + jy * control functions evaluated in this manner, Eq.

Kz), and the e" (I=1,2,3) are the three (1) will produce a grid composed of parallel
transformed, curvillnear coordinates. The Pn are straight lines for this boundary configuration,
the "control functions" which serve to control the thus reflecting the boundary point spacing into
spacing and orientation of the grid lines in the the field (Fig. 3).

field.
Now consider an 0-type grid with two

Negative values of the control function Pn concentric circular boundaries and equally spaced
cause grid lines on which fn Is constant to move points around the circles (Fig. 4). Because of
in the direction of decreasing In. This feature its inherent tendency to cause the grid lines to
can be used to concentrate grid lines near other move closer to convex boundaries, Eq. (1) with no
grid lines and/or points or in certain regions of control functions will produce a grid with unequal
physical space. However, a more automatic radial spacing of the circumferential lines (Fig.
procedure is to dete:mine tre control functions so 5). In this case, evaluation of Eq. (I) with the
as to project the boundary point spacing into the polar coordinate transformation;

field. The details are discussed in reference 3; 2
however, a brief explanation is presented here. x (r. ) = r(t )cost

yfr.0) = r(f2 ) sin@
Consider first a rectangle with equally spaced

points on the .orlIzontal sides but unequal spacIng yields the equation
on the two vertical sides (Fig. 1). With no
control functions, P Pn=

0
, Eq. (1) will - f2 + rZ

produce a grId that attempts to be equally spaced r'Z r (8)
in the interior of the region, (Fig. 2). A gri c"
of parallel lines for this configuration, Tnus, in order to produce a specified radial
reflecting the unequal spacing on the boundaries distribution of lines, the control function P2
(Fig. 3), can 9nly be produced from Eq. (1) wltn must be evaluatel from Eq. (8) using the given

t2o ta.(1ng t - to vary on the horizontal sides listribution r(" ). First, a radial cut is made
an. to vary on the vertical sides). in the physical plane from the inner to the outer

circle. The circular region can now be unwrapped
Tne proper values of P2 needed to accoc;llsn to form a computational field that has its two

tn's are leterlined by evaluating Eq. (1) one- vertical sides corresponding to the cut between
d!enslonaily n the vertical sides, with tne tne two circular boundaries in the physical field
result Fig. 6). Therefore, with the speoified radial

distribution placed on the two vertioal sides of
Y 2 P Is tne comoutational field, the oontrol function P2

w .e e; can be evaluated from Eq. (8) on these ides as

- * " r

2 j
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Copy Iv:'

peilit f1,1'3
P - -Ir'.'.)-2r(: )'.rI.J-l , is evaluated by interpolating the q'uantities in S

, r,': I parentheses between the vertical sides,
interpolating tne radius of curvature between tne b

hcrizontal sides, and then evaluating P2 from Eq. V
r( 1-1)1 (9) (10) using these interpolated values. Note that

2this procedure supplies a finite radius of
curvature over the inner body, thus reducing the
control function appropriately in tris region.

and a similar equation with I as the first
arg-ent. Tne interior values then can be A problem arises, however, when the radius of'
determined by interpolation between the two curvature (r) is of opposite sign on the two
vertical sides as before. Note that this amounts boundaries between which it is interpolated (Fig.

to interpolation in the circumferential direction 10), since then the interpolation .. 1 produce a

in the physical plane. Again, equal spacing zero value at some point in between, and at such a

around the circles produces a zero value of the point the second term of Eq. (10) is infinite.
otner contr2. function, P,. In general, P, would This problem can be corrected by Interpolating
be evaluated on the two circles and interpolated 1/r, instead of r. This amounts to writing Eq.
between the two horizontal sides in the (10) as

cop tational region, i.e., between the two 1 ) ((2 ( ,2

circles in the physical field. Both the radial 2 , -
an- crcumferential interpolation schemes are 

-f m
represented in Figure 7.

and interpolating the curvature (1.'r), rather than
Tne second term in Eq. (8) arises from the the radius of curvature (r).

curvature of the boundary, and the denomInator is
the local radius of curvature of the grid line Although the exact equations for the general
that is to pass through the point where the case are more complicated, the control function,
control function is being evaluated. Tnis term Pn' may still consist of spacing terms along a
acts to reduce the magnitude of the control boundary and terms arising from the local

function in order to allow for the natural curvature of crossing lines. This amounts to
tenency of the grid lines to move toward convex interpolating the spacing terms between the four
Doundaries. SInce the lines tend to concentrate sides on which In varies (Fig. 11) and
near the inner circle even with zero control interpolating the local curvature terms between
functions, the use of the first term alone in Eq. the two sides on which Pn is constant (Fig. 12).

(8), (in analogy with the flat boundary case, The question that then arises is whether the
i.e., Eq. (6)), would produce a stronger transfinite interpolation for the spacing term and
concentration of lines near the inner circle than the local curvature term should use linear
was intended. blending functions or blending functions based on

* physical arc length. The former (linear) amounts
Finally, consider a C-type grid (Fig. 8), with to interpolating in terms of the transformed

the resulting computational region (Fig. 9). If curvilinear coordinate, while the latter (arc)
now the control function P is evaluited on lines amounts to interpolation with respect to the
1-2 and 4-3 in the physical field from Eq. (6), physical distance. For example, on the grid
and the interior values are interpolated between illustrated in Fig. 13, interpolation with
the two vertical sides in the computational field, "linear" blending functions would produce a value
the resulting control function, while serving well on line 3 that is the average of that on lines I

over the right portion of the physical field, will and 5, while with "arc" blending functions the
be too strong over the Inner body where the line value produced on line 3 would be closer to this
curvature is not zero. The use of Eq. (8) on the on line 1.
I"Ines 1-2 and 4-3 would be no better since the r
in the denominator is to be interpreted as the Flow Solver
local radius of curvature of the crossing line and
hence is infinite on these lines so that the For this investigation a three-dimensional
second ter- in Eq. (8) vanishes. time-depenjnt Euler approximation, developed by

Whltfleld, was employed using finite volume
This situation can be remedied by discretization and a second-order implIcit scheme

interpolating for the local radius of curvature in to solve the flux-vector-split form of the
Eq. (8) between the inner and outer boundaries in equations with local time stepping. This scheme

the pnysIlcal field, I.e., between the horizontal solves 5x5 block bi-diago~ll syste.s of equations
sides in the computational region. However, since using Doolittle's method. Characteristic
the 2 derivatives in Eq. 5) must still be .ariable boundary conditions are used in the

* evaluated on tne vertical sides it is necessary to farfield and at Impermeable surtaces. No
separate Eq. ' Into three pieces: additional artificial dissipation is added, and

P2 ,1 2 1 the scheme is conditionally statle In three
- , dimensions. Optimum CFL numbers appear to be

,(0) between 12.5 to 15.

Now the two quantities in parentheses are Configuration and Flow Conditions
eval eO cIn .,? verI'cal s1Ies of th.

.. 2 :. tat-"na' .eg, -n, wtIle the rilus ^f TnrteA gonerl. weapcn/3tore c- tg--rat1h-.3 are

c -vature Is evaluateo on the two horizontal examined uslng tne various grId.InE ;rcoe--es a n.

slO . The c~ntro: f~unct'on in the interior then rli types. The first geometry " " ur -r '.

3:;
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consists of a 10/3 D cylindrical centerbody and which the expansion is overpredicted and no
5/3 D tangent ogive forebody and afterbodyl (Fig. dispersive effects are witnessed downwind of the
14) and is modeled using an 81x15x10, 0-type grId. expansion.
This configuration is used to represent a typical
fuel tank carried on current aircraft and is Although not shown, similar results are
examined at two transonic Mach numbers, 0.85 and obtained for Configuration I (0-type grid) at both
1.20, both at zero degrees angle-of-attack. The flow conditions and Configuration 2 (H-type grid)
second geometry (Cogiguration 2) consists of a at Mw, =0.999 and & =00. These results again show
100 cone-cylinderl (Fig. 15) and is modeled using that the "linear" interpolation tecnnique for the
an 81x15x10, H-type grid. Tnis geometry is used spacing term reflects a more accurate second-
to represent a generic penetrator and is examined order, inviscid solution for all cases.
at M=0.999 and .00. Th- third geometry
(Configuration 3) consists of a 1.5 D tangent Local Curvature Term
ogive fgebody and a 20 D cylindrical aft
section (Fig. 16) and is modeled by a 65x20x10, The first part of this analysis examines the
C-type grid. This configuration is used to model effects of interpolating for the radius of
a high-fineness ratio (21.5:1) body-alone missile curvature (r) using both the "linear" and "arc"
airframe, and is analyzed in the subsonic range at techniques to obtain the local curvature term in
' =0.70 at .--5.07° and in the transonic range at M the control function. Figure 20 shows the effects
=o.90 at :00. of these two techniques for the 0-type grid on

Configuration 1. Using the "arc" technique, a
Analysis better concentration of grid lines is obtained

close to the body (Fig. 20a,b). Using the

Two Investigations examined control function "linear" technique, a comparable grid is produced;
interpolation techniques. The first analysis however, the grid is not as concentrated near the
Involved employing both the "linear" and "arc" body (Fig. 20c,d). Figure 21 shows the effects
tecnniques for interpolating the spacing term in these two grids have on the Euler solution at M.
the control function. The second study =1.20 and a z00. The "arc" grid, with its greater
investigates the use of the "linear" and "arc" concentration of lines near the body, resolves the
techniques with respect to the radius of curvature flow-field more accurately in the stagnation
(r, and curvature (1/r) interpolations for the region. Physically reasonable results are
local curvature term In the control function. obtained using the "arc" grid in which the first

cell on the nose yields a higher pressure
Spacing Term coefficient (C ) than does the second or third

cell (Fig. 21b. The "linear" grid yields
Figure 17 shows the effects of the unreasonable results in which the third cell back

interpolation for the spacing term using the on the nose yields a higher C than does the first

"linear" and "arc" techniques for the C-type grid or second cell (Fig. 21b). Ffpgure 22 shows the
on Configuration 3. Using the "linear" effects these two grids have on the Euler solution
interpolation (Fig. 17a), the grid lines better at tL--0.85 and,=0

0
. Both grids yield physically

reflect the concentrated point distribution in the reasonable, although markedly different, results
shoulder region of the body, thereby aligning the at these flow conditions.

grid with the shock pattern that develops near
that location. Figure 17b shows a close-up view Similar results are obtained for Configuration
of the grid near the shoulder region of the body. 2 at M =0.999 and a =00 and for ConfIguratlon 3 at
Using the "arc" interpolation, the grid lines are both flow conditions. These results show that
slanted far forward and hence, do not align interpolating for the radius of curvature (r)
themselves with the shock pattern (Figs. 17c,d). using the "arc" technique to obtain the curvature
Figure 18a shows the effects these two grids have term in the control function yields a more
on the Euler solution. Figure 18b gives an physically reasonable solution for all cases.
expanded view of the shock region. For the
"linear" g-id, a typical second-order solution to Due to the fact that complications can arise
the Euler equations at M. =0.90 and a=00 is when interpolating for the radius of curvature
obtained. One expects the computed shock strength (r), a second examination is performed to study
to be slightly higher than the experimental data the effects of interpolating for the curvature
at the peak of the expansion and, although not (1/r) using both the "linear" and "arc"
desirable, second-order "ringing" (dispeisive techniques. Figure 23 shows the effects of using
effects) is expected downwind of the shock for the "a.c" technique on the 0-type and C-type

this upwind scheme. The "linear" grid solution grids. This technique yields an undesirable grid
shown has expanded at the shock more than one in which the lines are highly skewed and, hence,
expects, but does reflect the characteristics of is not useful to the Euler solver. Therefore,
tne InvIscld solver. The "arc" grid solution, when interpolating for the curvature (1/r) only
althougn more closely matching the experimental the "linear" technique should be used.
data, does not reflect the qualities of an
accurate, second-order, inviscid solution. Figure Control Function
1; snows the effects these two grids have on the
Euler solution at M, =0.70 and a =5.070. The Depending on the geometry, there are twc
"linear" grid solution, once again, reflects a optim=- approaches for obtaining the control
typIcal second-order, inviscId solution by over function, Pn. The first method is to employ the

predicting the expansion and, sinoe no shock was "linear" teonniquo to obtain the spacing tem an4,
formed, exhibits no dispersive effeots (ringIng), when the two opposing boundaries have Crvatura or
The "arc" grId solution shows similar results in the same sign, to interpolate for the rad.ius of

4
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curvature (r) using the "arc" technique to obtain 
2
Kutler, P., "A Perspective of Tneoretical and

the local curvature term (Method 1). The second Applied Computational Fluid Dynamics," AIAA Parer
method is to, again, employ the "linear" tecnnique 83-0037, Reno, Nev., Jan. 1983.
to obtain the spacing term and, when the two r

opposing boundaries have curvature of the opposite 3Thompson, J.F., Warsi, Z.U.A. and Mastin C.W.,
sign, to interpolate for the curvature using the Nuerical Grid Generation: Foundations and
"linear" technique to obtain the local curvature Applications: North-Holland 1985.
term (Method 2).

4Thompson, J.F., "A Survey of Grid Generation
These two methods yield similar grids and a Techniques in Computational Fluid Dynamics," AIAA

thorough comparison shows that both methods give Paper 83-0447, Reno, Nev., Jan. 1983.
approximatey the same Euler solutions. Figure 24 5

shows the effects of these two methods on Thompson, J.F., "A Survey of Dynamically-
Configuration 1 (0-type grid) at YL_:1.20 and , =00. Adaptive Grids in the N'umerical Solution of
The results are essentially the same except in the Partial Differential Equations," Applied Numerical
stagnation region where Method 2 (spacing: Mathematics, pp. 3-27, 1985. 74
"linear", local curvature: curvature - "linear")
does not concentrate the grid lines as close to 1hompson J.F., "A Survey of Composlte Grid
the bodly and; nence, does not appropriately Generation for General Three-Dimensional Regions,"
resolve the flowfield (Fig. 24b). Figure 25 snows to appear in Numerical Methods for Engine
the effects of these two methods on Configuration Airframe Inte ration, S.N.B. Murthy and G.C.
2 (H-type grid) at M_ =0.999 at a =00. These Payntor (ed.), AIAA.
results snow that both methods yield essentially 7
identical solutions. Figure 26 shows the effects 7 Eiseman, P.R., "Grid Generation for Fluid
of' these two methods on Configuration 3 (C-type Mechanics Computations, Annual Review of Fluid
grid) at M_ =0.90 and n =0O . Again, these results Mechanics, Vol 17, 1985.
show that both methods yield the same second-
order, inviscid solution. 8Thompson, J.F. (Ed.), Numerical Grid

Generation, North-Holland, 1982. (Also published
As can be seen by a comparison of Figures 20 as Vol. 10 and 11 of Applied Mathematics and

and 23 and the results in Figure 24, it is Computation, 1982).
advisable to interpolate for the radius of
curvature (r), rather than the curvature (1/r), to 9Smith, R.E. (Ed.), Numerical Grid Generation
obtain the local curvature term In the control Techniques, NASA Conference Publication 2166, NASA
function when the curvature has the same sign on Langley Research Center, 1980.
the two opposing boundaries. In fact, 10

interpolating for the curvature (/r) does not Ghia, K.N., and Ohia, U. (Ed.), Advances in
produce the exact form given by Eq. (8) for the Grid Generation, FED-Vol. 5, ASME, Applied
simple case of two concentric circles. Mechanics, Bioengineering, and Fluids Engineering

Conference, Houston, 1983.
Conclusions and Recommendations 11 Kaul, U., and Chaussee, D.S., "A Comparative

This study has demonstrated the viability of Study of Parabolized Navier-Stokes (PNS) Cod,
automatic oetermination of the control function Using Various Grid Generation Techniques," A>.A
from the boundary point distributions using Paper 84-0459, Reno, Nev., Jan. 1984.
separate interpolation of the terms arising from
spacing and those arising from local curvature. 12Whitfield, D.L-, "Implicit Upwind Finite
The following is recommended as the optimum Volume Scheme for the Three-Dimensional Euler
approach for obtaining the control function in the Equations," Mississippi State University Paper
elliptic grid generation system (Eq. 1). For the EIRS-&SE-85-1, Sept. 1985.
spacing ter-, the "linear" blending approach
should be employed globally. For the local 13Dahlqust, G. and Bjorck, A., Numerical-
curvature term, global interpolation for the Methods Prentice-Hall, Inc., Englewood Cliffs,
radlus of curvature (r) using the "arc" tecnhnique N.J., 1974.
should be employed. However, when the two
opposing boundaries have curvature of the opposite 14Mrdeza, M.N., "CFD Unfinned Store Mutual
sign, local Interpolation for the curvature (1/r) Interference Wind Tunnel Experiment," AEDC-TS-85-
using tne "linear" technique should be used. P21, Calspan Corp./AEDC Division, Nov. 1985.

It has been shown throughout this analysis 15Hartman, K., "1.5 D Ogive-Circular Cylinder
tnat various grid generation techniques employed Body, L/D-21.5," Experimental Data Base for
within the co.de do have a substantial impact on Computer Program Assessment, AGARD Paper AR-138,
tne solution and, when care is taken to gene-ate May 1979.
tne grid in the proper manner, these grids help
t.ie flow solver to yield accurate second-order,
... v.s zd solutions.
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